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Abstract 

Results of experiments designed to demonstrate spectrally selective absorption in 

dielectric waveguides on semiconductor substrates are reported. These experiments 

were conducted with three waveguides, formed by sputtering films of PSK2 glass 

onto silicon-oxide layers grown on silicon substrates. The three waveguide samples 

were studied at 633 nm and 532 nm. The samples differed only in the thickness of 

the silicon-oxide layer. specifically 256 nm, 506 nm, and 740 nm. Agreement 

between theoretical predictions and measurements of propagation constants (mode 

angles) of the six or seven modes supported by these samples was excellent. 

However. the loss measurements were inconclusive because of high scattering losses in 

the structures fabricated (in excess of 10 dB/cm). Theoretic calculations indicated 

that the power distribution among all the modes supported by these structures will 

reach its steady-state value after a propagation length of only 1 mm. Accordingly, 

the measured loss rates were found to be almost independent of which mode was 

initially excited. The excellent agreement between theory and experiment with 

respect to the propagation constant leads to the conclusion that experiments with low- 

loss waveguides would confirm the theoretically predicted loss rates of the different 

modes. and thus the anticipated spectral selectivity of such structures. 
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This report concludes a four-year study of the possible applications of guided- 

wave structures to solar energy converters. The study began by examining the 

application of surface plasmons, particularly the long-range surface plasmons that 

propagate on thin metal films. and on pairs of such films separated by thin dielectric 

layers. The results of our theoretical studies of such structures were published early 

in the program."' As explained in prior letter reports, our experimental attempts to 

launch plasmons on thin metal layers by endfire coupling were not conclusive. They 

were abandoned in 1985 in favor of studying more promising structures, namely 

dielectric waveguides bounded by semiconducting substrates. The body of this report 

describes these latter studies. 

We begin with a brief description of the theoretical framework, which we have 

incorporated into a computer program that can compute the real and imaginary parts 

of the propagation constants of all modes (bound or leaky) that are supported by any 

collection of homogeneous, isotropic films grown on arbitrary substrates. The real 

part of the propagation constant yields the mode angle in the guide; the imaginary 

part defines the loss rate. These were computed for the structures used in the 

experiments . 
We then describe the experiments, in which grating couplers were used to 

selectively launch individual modes of our multi-mode guides. The mode angles were 

measured by noting the angle between the normal to the structure and the direction 

of the collimated input beam to the grating. The loss rates were measured for initial 

excitation of each and every mode. Because of scattering, the rates are not 

characteristic of the modes initially excited, but reflect, rather, the collective loss rates 

of all the modes due to both absorption and scattering. 

The numerical and graphic predictions of theory and the results of 

experimentation. with respect to both mode angles and losses, are summarized in three 

tables and two graphs at the end of the report. The agreement with respect to mode 

2 



e 

e 

8 

0 

e 

angle is excellent. The loss rates are inconclusive, because of scattering. We 

conclude, because of the excellent agreement for the mode angles. that we are capable 

of designing spectrally selective waveguide structures for solar energy applications. 

but incapable of sputtering, with our present facilities, the low-loss waveguides 

necessary to verify our designs. 

Theory 

The theory used to calculate the waveguide properties was detailed in a paper 

by Chilwell and Hodgkin~on.~ We will present a brief summary here. 

Consider a stack of dielectric films lying parallel to the yz plane, thus: 

c 1 2  j-1 s 

This structure will support guided waves if at least one film is surrounded by films 

of lower refractive index. For true confinement, the cover and substrate indices 

must both be lower than at least one of the film indices. We write the x and y 

dependence of the plane-wave fields as exp[ik(ax + By) - iwt], where propagation of 

the guided modes is in the y direction, there is no variation in z. and the films lie 

parallel the yz plane. The total field distribution is a superposition of these plane- 

wave fields. 

8 from the normal to the stack, we have 

For a plane wave in the cover layer, incident on the stack at an angle 

aj - nj cosej = (nj2 - 82)1/2 

B = nj sinej . 

If the optical field is known at a single x value, it 

the use of 2x2 matrices. For a single layer we write, 

1 .  

can be found everywhere with 

* 

e 

["'-I] Vj- I = Mj [?] , 
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where Mj is the field-transfer matrix. For TE modes. Uj and Vj are the complex 

amplitudes (at the boundary of the jth and (j + l)th layers) of the electric-field vector 

and the magnetic-field vector (transverse to the direction of propagation), respectively. 

These techniques are familiar from thin-film analysis6 The field-transfer matrix is 

given by 

1 .  cmaj (-i/yj)sinQj 
M j s  [ -iyjsinaj coscPj 

where Qj = kaj(xj - xj-,) is called the phase thickness of layer j, and yj - njcosBj/z,, 

with z, - @,,/c~)~/~. The field-transfer matrix for a stack of layers is equal to the 

product of the individual layers' matrices, 

J 
M -  n M j .  

j= 1 

Thus by finding the field-transfer matrix for the entire stack of dielectrics, one can 

calculate the field distribution throughout the stack for a given CY and 8. 

We can now apply this formalism to determining the guided modes. These 

modes are evanescent in the cover and substrate, and oscillatory in at least one of the 

dielectric films. We 

require the fields in the cover and substrate to decay exponentially in x: i.e., the 

evanescent fields. Setting up the relations between the fields in the cover and the 

substrate and applying the boundary conditions from Maxwell's equations leads to 

In other words. nc. ns c pr. where p, is the real part of p. 

Solving this equation leads to the modal dispersion equation 

XM@) yc'll + rcrsM12 + M21 -+ 7 ~ ~ 2 2  * 

This equation holds only for discrete values of p, which are the guided modes. By 

allowing complex dielectric constants, and thus complex 0. one can calculate the loss 

coefficients (due to absorption losses in the films) from 0, since the field propagates 
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as exp[-kpiy]. where pi is the imaginary part of 8. 

In modeling the experiment described below, a slight change in the formalism is 

necessary. The substrate layer was silicon. which has a much higher index of 

refraction than any of the film layers (nr Z 4). Thus we must relax the requirement 

of evanescent fields in the substrate Ur < ns). 

A program was written to handle an arbitrary number of films with complex 

The program finds the roots of the above modal dispersion 

From these, the effective mode index 8, and the 

indices of refraction. 

equation in the complex /3 plane. 

losses in the guide pi are calculated for each guided mode. 

Experiment 

To test the idea of wavelength-dependent coupling. samples were fabricated in 

which a silicon substrate provided the absorbing dielectric layer. Since the index of 

silicon is high (nr 1 4). a low-index buffer layer is needed between the guiding layer 

and the silicon. To achieve this. the wafers were baked in an oxygen atmosphere. 

This resulted in a layer of silicon dioxide on top of the silicon. The SiO, acted as 

the buffer layer between the waveguide and the silicon substrate. Buffer layers 

were fabricated with thicknesses of 0.74. 0.506, and 0.256 pm. 

A relatively low-index glass. PSKZ was sputtered onto these processed silicon 

substrates to form the actual guiding layer. The deposition of this glass was a major 

stumbling block. The sputtering system in use was poorly designed and was host to 

a large number of materials. The system spent a large portion of the time under 

repair or in transition between different sputtering materials. Although many 

waveguides of the PSK2 glass were fabricated. linear scattering losses on glass 

substrates were never less than approximately 10 to 15 dB/cm. On the silicon 

wafers, the losses were worse. As will be seen later, this became a severe hindrance 

to the testing of the principles of wavelength-dependent coupling. 
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One of the requirements of these waveguiding structures is that either the 

buffer layer or the waveguide have a taper. so that the longer wavelengths can be 

coupled out at a different physical location than the shorter wavelengths. To 

demonstrate that tapered films can be fabricated. tapered layers of PSK2 were 

deposited on the silicon substrates. This was accomplished by de-centering the 

substrate holder above the sputtering target. The substrates were held off-center. and 

thus the end of the substrate closer to the center of the target had thicker layers 

deposited than the portion of the substrate farther away from the target. This 

procedure produced nicely uniform tapers. The taper was visible to the eye as a 

series of interference fringes across the film. Also, by measuring the guided-mode 

indices of the film, and fitting the observed /3 values to the /3 values calculated by 

the computer program, the thickness and index of the guiding layer can be estimated. 

The thicknesses at either end of the film were indeed found to be different, with 

tapers of about 1/2 pm over a length of 40 mm being typical. 

To characterize the waveguides. a method to couple into the guides was 

required. Since it was felt that the pressure of prism coupling into the guides would 

crack them, grating couplers were used. A photoresist grating was written on the 

surface of the waveguide using holographic techniques. By measuring the grating 

line spacing and the angles at which light coupled into the waveguide, the /3 values 

for the guide could be calculated. The computer program was then used to deduce 

the index and thickness of the guides. 

The next task in the characterization of the waveguides was the measurement of 

the losses of the guide. To this end, a method developed by Himel and Gibson' was 

employed. When a guided mode propagates in a waveguide with scattering losses, 

light is scattered out of the plane of the waveguide, forming a visible streak. A 

coherent fiber bundle was placed in contact with the waveguide streak. A 20 ,u slit 

was scanned across the end of the fiber bundle, and the output fed into a 

photomultiplier tube. The intensity seen by the photomultiplier was detected by a 
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lock-in amplifier, collected by a microcomputer. and plotted by a data-reduction 

routine. The logarithms of the intensity values were taken and displayed by the 

computer. If the intensity decay is an exponential function of length. then the 

logarithm is a linear function of length, with the slope equal to the loss coefficient. 

A linear regression best-fit routine was used to fit the line to determine this 

coefficient. The loss values were read from the linear fit. 

Results 

The results of the experiments are tabulated in Tables 1 through 3. and also in 

the accompanying graphs. The measured and the calculated values of the effective 

index (equal to 6,) and the losses (proportional to Bi) are shown. When no 

experimental value is entered in the table, the measurement could not be made, for 

reasons explained below. As can be seen, the agreement between theory and 

experiment for 6, is quite good. while for pi it is not as good. This has several 

explanations. 

The root of the problem is the extremely poor quality of the waveguides. The 

loss-measurement technique requires a visible streak extending over several 

millimeters. As the streak gets shorter, the accuracy of the technique is reduced. 

Also. experimentally, as the losses increase. the intensity of the streak weakens. and 

the signal-to-noise ratio of the experiment worsens. For many of the lossier higher- 

order modes, the streak was only a few millimeters long. The error involved in 

fitting a best-fit line to such a short streak is quite large, as much as *50%. Thus, 

for losses above 30 to 40 dB/cm. very accurate measurements cannot be expected. 

However, this does not explain why the losses in the measurable modes were 

found to be almost constant. A possible explanation is that in the presence of high 

scattering losses. as Marcuse has shown8 the power in a waveguide distributes itself 

among all the modes of the guide. So, in our samples, optical power is probably 

being scattered from the mode of interest into lower-order modes. These modes all 
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have approximately the same losses. A rough calculation from Marcuse shows that 

for a 30 dB/cm waveguide, the steady-state power distribution should be reached 

after about 0.2 to 2 111111. depending on the correlation length of the refractive index 

inhomogenieties that generate the scattering. The distance from the grating coupler to 

the edge of the fiber bundle was typically on the order of 1 mm, so the experiment 

was always performed in the steady-state power distribution region. In Marcuse's 

words, 'I. . . once the steady state is reached, the average power carried by each 

mode decreases at the same rate . . . ."g Thus the losses appear to be almost the 

same as in the lower-order modes. For the very high-order modes, where theory 

predicts losses in excess of 100 dB/cm. the optical power is absorbed by the silicon 

before it has a chance to scatter into the lower-order modes. Thus there is 

essentially no streak, and no way to make a measurement of the losses. So the 

higher-order modes do have extremely high losses. as expected. 

It appears that we have verified Marcuse's coupled-power theory more 

thoroughly than we have demonstrated wavelength-dependent coupling. However, we 

did see that the higher-order modes have extremely high losses, as predicted by the 

theory. Also, since such good agreement for the real part of the propagation constant 

was seen, it follows that the imaginary part (which deals with losses) should agree 

with experiment as well. Both derive from the same complex solution of Maxwell's 

equations, which are quite sound. We are confident that with adequate waveguides, 

the theory would be shown to be accurate. 
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Table 1. Effective indices and losses for Sample One. SiOz buffer 
layer thickness is 0.256 p. 

Wavelength - 0.6328 p 

0 1.5619 9.202 
1 1.5524 38.69 
2 I S366 94.53 
3 1.5142 I88 
4 1.4850 340 

Wavelength = 0.532 p 

0 1 S657 3.86 
1 I S589 16.26 
2 1 S476 39.9 
3 1.5316 79.9 
4 1.5108 I45 
5 1.4852 253 
6 1.4546 428 

I S620 34.12 
1.5523 36.08 
1.536 1 34.5 
1.5152 
1.4851 

1 S657 35.2 
1.5600 36.5 
I S483 37.7 
1 s334 37.1 
1.5131 
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Table 2. Effective indices and losses for Sample Two. 
layer thickness is 0.506 p. 

SiOz buffer 

THEORY EXPERIMENT 
Mode loss loss 

Number Ne, (dB/cm) Ne, (dB/cm) 

Wavelength - 0.6328 p 

0 1 .5628 
1 1 S563 
2 1.5454 
3 1.5301 
4 1.5103 
5 1.4860 
6 1.4573 

Wavelength = 0.532 p 

0 1 S664 
1 1.5617 
2 1.5539 
3 1 .5429 
4 1 .5287 
5 1.5112 
6 1.4906 
7 1.4668 

0.34 
1.53 
4.23 

10.1 
23.1 
54.4 

135 

0.083 
0.373 
1.01 
2.37 
5.30 

12.1 
29.3 
77.5 

1 S629 24.8 
1 S554 25.9 
1.546 1 26.5 
1 S297 27.7 
1.5110 28.3 
1.4852 27.9 
1.4558 

1 S679 28.6 
1 S637 30.1 
1.5548 30.5 
1.5433 33.5 
1 S273 35.8 
1 SO84 38.0 
1.4878 42.5 
1.4606 
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Table 3. 
layer thickness is 0.74 p. 

Effective indices and losses for Sample Three. SiO, buffer 

THEORY EXPERIMENT 
Mode lOSS loss 

Number Ne, (dB/cm) Ne, (dB/cm) 

Wavelength = 0.6328 p 

0 1.5615 0.031 
1 1.5542 0.154 
2 1.5418 0.515 
3 1 S245 1.64 
4 1 .5022 5.73 
5 1.475 1 24.3 

Wavelength = 0.532 p 

0 1 S652 0.005 
1 1 S599 0.023 
2 1.5510 0.075 
3 1 S385 0.224 
4 1.5224 0.71 1 
5 1 SO27 2.63 
6 1.47% 12.48 

1.5613 
1.5537 
1.5419 
1 S250 
1 SO30 
1.4768 

1 S660 
1 S605 
1 S528 
1 S409 
1 S242 
1 SO62 
1.4841 

27.7 
21.7 
23.2 
30.9 
33.1 
39.4 

23.9 
27.0 
26.9 
29.1 
31.0 
32.5 
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